
PB*: Preference-Based Path-Planning for
Autonomous Robots

Gabriel Kepets
The Cooper Union

Department of Electrical Engineering
New York, USA

gkepets@gmail.com

Ayden Shankman
The Cooper Union

Department of Electrical Engineering
New York, USA

aydenshankman1@gmail.com

Netanel Fiorino
The Cooper Union

Department of Mechanical Engineering
New York, USA

netanelmf@gmail.com

Abstract—Efficient travel for an autonomous robot requires
a path-planning algorithm to determine the optimal path to
take based on certain criteria. The most common criteria
are speed, safety, and energy, as most autonomous robots are
designed to operate in remote and/or difficult terrain where
recharging, repair, or replacement is difficult or impossible. Most
path-planning algorithms are catered toward specific robots,
environments, or tasks, so the algorithms prioritize a static set
of criteria, typically one or more of the three criteria previously
listed. Many robots would benefit from having a path-planning
algorithm that can dynamically prioritize a combination of the
three criteria while also being generalizable to any type of
autonomous robot. We present a novel path-planning algorithm,
called PB*, that accounts for a robot’s specifications, including
its mass, dimensions, energy usage, and climbing abilities, and
allows the user to set preferences for how much to prioritize
speed, safety, and energy when calculating paths on any type of
terrain. After running various tests, we demonstrated that PB*
can provide accurate paths that respond appropriately to user
inputs within a reasonable run-time.

Index Terms—Autonomous robots, path-planning, A*, LiDAR

I. INTRODUCTION

Autonomous robotics is a field of study that focuses on the
development of robots that are able to operate independently
of human control. Today, autonomous robots are used for a
variety of applications, including industry, search and rescue,
surveillance, and military operations [1] [2]. These robots
require algorithms and systems that enable them to perceive
their environment and make decisions based on gathered
information. One of the most important tasks for a functional
autonomous robot is path-planning. Path-planning is the task
of finding the optimal path for a robot to follow between
points in a defined space (often a physical space). Paths
are considered optimal based on specific criteria; the most
common path criteria for autonomous robots are speed, safety,
and energy [1] [2]. Speed relates to how much time it takes
for a robot to reach a destination, safety relates to how risk-
averse or traversable a path is, and energy relates to the energy
efficiency of the path.

However, the vast majority of path-planning algorithms are
catered to very specific robots, environments, and tasks, so
they are designed to only optimize for a static set of one or
two of the three criteria mentioned [1] [2]. An example of such

(a) (b)

(c) (d)

Fig. 1: Four steps of PB*: (a) User input collection. (b) Map
generation (blue cells are higher, red cells are lower). (c) PRM
generation. (d) Path-planning.

a path-planning algorithm is the one deployed on the Mars
rovers known as Spirit, Opportunity, and Perseverance, which
strictly prioritize safety when generating paths [3]. Addition-
ally, most path-planning algorithms are designed to account for
the exact specifications and capabilities of a particular robot,
such as its dimensions and battery capacity [1] [2]. However, if
a robot’s objective or specifications change, it is possible that
the criteria or decision-making for its path-planning algorithm
would need to change as well. For example, if a robot that
usually prioritizes only safety when calculating paths suddenly
becomes low on power, it may want to switch to prioritizing
energy conservation when calculating new paths. To the best of
our knowledge, there is currently no path-planning algorithm
that allows for adjustable levels of prioritization of the three



main criteria of speed, safety, and energy, and that is also
generalizable to any type of autonomous robot.

In this paper, we present a novel path-planning algorithm,
called PB*, that addresses this issue. A user inputs various
specifications of a robot, such as its mass, dimensions, energy
usage, and climbing abilities (Figure 1a). A function then
converts point cloud data collected by a 3D LiDAR (also
provided by the user) and converts it to a 2.5D height map,
which is a 2D grid that represents a 3D surface or terrain by
mapping the height and normals information to the surface to
the grid (Figure 1b). A probabilistic road map (PRM), which is
a graph comprised of a set of randomly sampled points that are
each connected to a fixed amount of their nearest neighbors, is
then generated on top of the height map (Figure 1c). The path-
planning algorithm A* is then applied to calculate the optimal
path from one point on the PRM to another (Figure 1d), where
the cost of each edge between two points is calculated based
on the data from the underlying height map and the robot’s
specifications. Separate costs are calculated for speed, safety,
and energy and individually weighted based on the user’s
specified preference. Finally, a check is done to determine if
the edge is impossible for the robot to traverse, and if it is, a
relatively high cost, denoted as the limitation cost, is added to
the edge to ensure it is heavily avoided in the path-planning
process.

To demonstrate PB*, we have created a program with a
user interface (UI) that allows a user to input the various
specifications of a robot mentioned previously, along with
point cloud data from a 3D LiDAR. Following the user
input, the program displays a 2.5D height map representing
the surrounding terrain of the robot, which can be randomly
generated for demonstration purposes or based on LiDAR data
inputted by the user. The user can then input a start and goal
location for the robot to navigate, as well as their preferences
for speed, safety, and energy. The program then uses PB* to
calculate the optimal path from the start point to the goal point
and displays it on the height map for the user to see. Using
the same height map, the user is able to change their speed,
safety, and energy preferences, robot specifications, or start
and goal locations to generate new paths, to see how each
of these metrics may affect the generated path. PB* was also
tested on terrain generated by readings from a physical 3D
LiDAR to be evaluated within real-world environments.

II. APPROACH

A. User Input Collection

For PB* to return an optimal path, various inputs must
be collected from the user. The most important inputs are
the user’s criteria preferences, which are weights for how
important speed, safety, and energy are relative to each other.
Each preference is converted to be a percentage of the total
three weights. In addition to the criteria preferences, the
user must input the configuration of their robot. Every robot
specification input is listed in Table I.

The inputs specified in Table I are important for ensuring
that the generated path is optimal for the user’s robot, and

Input Explanation
Mass The mass of the robot
Width The width of the robot

Minimum Energy Usage The energy usage of the robot while travers-
ing on flat ground

Step Height Up The maximum height the robot can step up
Step Height Down The maximum height the robot can step down

Incline Up The maximum upwards incline the robot can
traverse

Incline Down The maximum downwards incline the robot
can traverse

TABLE I: Explanations of user inputs for robot specifications.

will be used during the cost calculation process of PB*. The
user also has the ability to input their own point cloud data or
randomly generate a height map.

B. Map Generation

PB* requires a 2.5D height map as an input, which is a
2D grid that represents a 3D terrain where each grid cell is
assigned a height that best represents the portion of the terrain
within it. Using 2.5D height maps is an intuitive method for
mapping life-like terrain to a discrete space and is commonly
used for path-planning for autonomous robots [4] [5].

It is assumed that the data representing the surrounding
terrain of a user’s robot is collected using a 3D LiDAR, so
the option to convert point cloud data to a 2.5D height map is
provided to the user. We created a function to perform this con-
version which takes a point cloud data (PCD) file comprised
of (x, y, z) coordinates as input. Each point’s normal is then
calculated based on all surrounding points within a set radius
using a built-in function of Open3D, which is an open-source
3D data processing library [6]. Then, each point, based on its x
and y coordinates, is assigned to a cell that would theoretically
be in a 2D grid that lies parallel to the ground. After each
point is assigned to a cell, the function loops through each
cell that has at least one point and calculates the maximum,
minimum, mean, and variance of the heights (z coordinates) of
the points within the cell. Additionally, the mean and variance
of the normals of the points within each cell are calculated. To
measure the variance of the normals, NormV ar, the following
calculation is used:

NormV ar =
Σn

i=1[(xi − x)2 + (yi − y)2 + (zi − z)2]

n− 1
(1)

where x, y, and z represent the three axes of a normal vector,
x, y, and z represent the mean on the three axes of all points
within a cell, and n is the total number of points within a cell.

Because current 3D LiDARs can only scan at a limited
amount of vertical angles, there are usually gaps in the point
cloud where flat ground would be, as shown in Figure 2a
between the dark blue circles around the center. Consequently,
there would be cells within the height map that don’t have any
points and the height map would be incomplete. To obtain
a full height map that approximates the terrain, only cells
within a set square boundary surrounding the center of the
point cloud are considered. The function then loops through

2



each cell within that square boundary, and if a cell has no
points, the algorithm described in Section IIE is used to find
which cells would be between the empty cell and the center. If
there are any cells that are considered obstacles (based on the
maximum height of the cell) between the empty cell and the
center, the empty cell is given a maximum height that classifies
it as an obstacle as well. If there are no such obstacle cells
between the empty cell and the center, it is given a maximum
height that is close to flat ground. Using this method, point
cloud data collected from a VLP-16 LiDAR was converted to
a 2.5D height map that could be used as an input to PB*, as
shown in Figure 2b.

(a) (b)

Fig. 2: (a) Top-down view of point cloud data collected from
VLP-16 LiDAR (darker colors are lower). (b) 2.5D height map
after conversion (blue cells are higher, red cells are lower).

C. Probabilistic Road Map

Many path-planning algorithms rely on an underlying graph
that represents the possibilities for movement [1]. Graphs are
a collection of points, called nodes, that are connected to
each other by edges. A path-planning algorithm that uses a
graph finds a path comprised of an ordered sequence of nodes
between the start position and the goal position. A simple
graph that can be used is a grid, which has the advantage
of accurately representing an underlying space. However, the
more nodes and edges there are, the more possible paths there
are, which means that the path-planning algorithm will take a
longer time to find the optimal path. Fewer nodes and edges
mean an optimal path will be quicker to find, but the resulting
path may be relatively inefficient.

In order to remedy this, a probabilistic road map (PRM) is
introduced. A PRM is a graph that is generated by randomly
sampling nodes [7]. The randomly selected points in a PRM
can be connected in a variety of ways; the most commonly
used method to connect them, which is what is used in PB*,
is the K-Nearest-Neighbors algorithm, which is an algorithm
that connects each point to K of the closest points in the
space, where K is a predetermined positive integer [7]. After
conducting experiments that compared a full grid to a graph
generated by a PRM using 50% of the points on a 64×64
height map, it was determined that, on average, paths on a

PRM were generated 14× faster than paths on a full grid and
were only 1.5× as costly.

In our UI, the user can specify the number of points in
the PRM and the number of edges per point. The PRM is
superimposed on top of the height map so that paths can be
generated from one point on the map to another, as shown in
Figure 1c.

D. Path-Planning

To find a path on the PRM, the A* search algorithm is
employed, which is an algorithm for finding the least costly
path between two nodes in a graph [8]. We decided to use A*
due to its simplicity, computational efficiency, and wide use
in autonomous robotics, computer games, and environmental
mapping [1]. A* utilizes a heuristic to estimate the distance
between a given node and the destination node, enabling the
algorithm to find the shortest path more efficiently.

The algorithm evaluates nodes in a priority queue containing
all previously examined nodes, and at each iteration, it selects
the node with the lowest total estimated cost to continue
exploring. The cost is calculated using the function:

f(n) = g(n) + h(n) (2)

where n is the current node on the path, g(n) is the cost of the
path from the start node to n, and h(n) is a heuristic function
that estimates the cost of the path from n to the goal node.
As long as h(n) is admissible, meaning it never overestimates
the minimum cost to the goal, A* is guaranteed to find the
optimal path without evaluating any point more than once.

During the A* search, to calculate the cost of traversing a
given edge between two points, separate costs for speed, safety,
energy, and limitation are calculated. The speed, safety, and
energy costs are each normalized to range between 0 and ∼1,
while the limitation cost is a relatively high cost (10,000) if
the edge is considered impossible for the robot to traverse, and
zero if it is possible. The total cost for an edge, g(n), is the
linear combination of the four costs where the coefficients of
the speed, safety, and energy costs are the weights determined
by the user preferences.

g(n) = wspeed · gspeed(n) + wenergy · genergy(n)
+ wsafety · gsafety(n) + glimitation(n)

(3)

At each node, separate heuristic costs are calculated for
speed, safety, and energy that each range between 0 and
1. Similar to Equation 3, the total heuristic cost for an
edge, h(n), is the linear combination of the three heuristics
where the coefficients are the weights determined by the user
preferences.

h(n) = wspeed · hspeed(n) + wenergy · henergy(n)

+ wsafety · hsafety(n)
(4)

3



E. Finding the Cells an Edge Travels Through in a Grid

Before being able to calculate the cost for an edge, the cells
on the underlying map that an edge passes through must be
determined. In the PRM generated from the height map, an
edge that connects one point to another, where both points lie
at the centers of different cells, might actually travel through
several cells that are in between the start and end cells, as
shown in Figure 3. To accurately calculate the total cost of
an edge, the cells that the edge travels through, as well as
the length traveled within each cell, must be determined. We
created an algorithm to determine the cells an edge travels
through in order from the start cell to the end cell and the
respective lengths traveled within each cell.

The algorithm takes a start and end point as input, where
the coordinates of each point must be integers (due to every
point on the PRM being at the center of a square cell with
side length 1 in a uniform-size grid), and outputs a list of cells
and the distance the edge travels through it.

When the start point (0,0) and end point (3,2) were chosen,
the algorithm returned the following list, where each element
the coordinates of a cell and the distance traveled through
it: [(0, 0), 0.600925, (1, 0), 0.300462, (1, 1), 0.901387, (2,
1), 0.901387, (2, 2), 0.300462, (3, 2), 0.600925]. These cells
match what is expected, as shown in Figure 3, and the sum
of their lengths is equal to the Euclidean distance between the
start and end points.

Fig. 3: Example of an edge (blue) that starts at cell (0,0) and
ends at cell (3,2). The edge passes through each red cell and
the blue line within each red cell is the portion of the edge
that travels through that cell. The blue dots are points on the
edge that lie on cell borders.

F. Calculating Speed Cost

The speed cost of an edge, gspeed(n), is exclusively based
on the length of the edge, due to the assumption that the robot
travels at a constant speed. The total length of an edge is
approximated by assigning a right triangle to each cell that
the edge travels through, where the base of each triangle is
the distance that the edge travels through the cell, dcelli , and
the height is the height difference between the cell and the cell
that immediately follows it, (hcelli+1

−hcelli). The total length
of the edge is calculated by summing the hypotenuses of every
triangle in the edge and then adding the distance, dcelln , that
the edge travels through in the last cell. This approximation
is calculated using the following formula:

EdgeLen = dcelln +

n−1∑
i=1

√
(hcelli+1

− hcelli)
2 + d2celli (5)

where n is the total number of cells that the edge travels
through.

To normalize gspeed(n) between 0 and ∼1, EdgeLen is
divided by the theoretical distance the robot would traverse
if it were to cross the length of the longest edge in the
PRM, dlongest, at the maximum upwards incline it can climb,
inclinemax.

gspeed(n) =
EdgeLen
dlongest

cos(inclinemax)

(6)

To obtain the heuristic cost for speed, hspeed(n), the Eu-
clidean distance from the edge’s end point, n, to the goal point,
g, is measured and divided by the length of the diagonal of
the height map, ldiagonal, in order to normalize it between 0
and 1. Because the path from an edge to the goal with the
minimum speed cost is a straight line, this calculation never
overestimates the minimum cost to get from the node being
evaluated to the goal, which makes it an admissible heuristic.

hspeed(n) =

√
(xg − xn)2 + (yg − yn)2

ldiagonal
(7)

G. Calculating Safety Cost

The safety cost, gsafety(n), for an edge is based on the
average of four separate costs that range between 0 and
∼1: step safety, turn sharpness, height variance, and normal
variance.

gsafety(n) = (StepSafety + TurnSharpness+

HeightV ar +NormV ar)/4
(8)

To calculate StepSafety, the cells that an edge travels
through are looped through, and the height difference, dh,
between one cell, cell1, and the next, cell2, is calculated as
dh = hcell2 − hcell1 . If dh > 0, meaning the cell goes from a
lower to a higher height, then the maximum step height, hmax,
is set to the robot’s maximum step height up, but if dh <= 0,
hmax is set to the robot’s maximum step height down. The
StepSafety cost of the step between one cell and the next
increases exponentially as the step gets closer to the robot’s
maximum step height up or down and is calculated using the
following formula:

StepSafety = 2
|dh|

hmax − 1 (9)

As it loops through each cell the edge travels through, PB*
keeps track of the highest calculated StepSafety cost, which
represents the most unsafe step in the edge being evaluated.
TurnSharpness is based on the turn angle the robot would

have to make to get to the current edge being evaluated from
the edge that came before it, as shown in Figure 4a. The closer
a turn is to a full 180◦, the more unsafe it is considered. To

4



calculate the turn angle, TurnAngle, the angle between the
current edge and the previous edge is calculated using the start
point, a, and end point, b, of the previous edge, and the end
point, c, of the current edge, using the following formula:

TurnAngle = arccos(
[b− a] · [c− b]

||[b− a]|| ∗ ||[c− b]||
) (10)

After TurnAngle is calculated and converted to degrees, it is
divided by 180 to normalize it between 0 and 1. If an edge
has no previous edges leading to it, the TurnSharpness cost
is 0.

TurnSharpness =
|TurnAngle|

180◦
(11)

HeightV ar is based on the variance of the heights of the
cells surrounding the edge being evaluated. The more height
variance there is, the less safe it is considered and should be
avoided as shown in Figure 4b, as high variance areas represent
uneven terrain. The width of the robot is converted to the
number of cells it spans, divided by two, and rounded to the
nearest integer which is denoted as R. For each cell, celli, that
the edge travels through, the cells that lie within the circle with
a radius of R that surrounds celli are found. The mean of the
heights of those cells is then calculated and used to calculate
the variance of the heights of the cells that surround the edge.

NormV ar is based on the variance of the normal vectors
that are associated with each cell that the edge being evaluated
travels through. The higher the variance of the cell normals
along an edge, the more unsafe it is considered. A lower
normal variance represents terrain, such as a ramp or flat
ground, while a higher variance can represent stairs or uneven
terrain. Obtaining the normal of each cell in the height map
is explained in section IIA. To measure the variance of the
normals, NormV ar, Equation 1 is used.

(a) (b)

Fig. 4: (a) Example of two edges where the angle between
them is calculated using the previous edge’s start point, a, the
end point, b, and the current edge’s end point, c. (b) Example
of a generated path avoiding areas with high height variance.

The heuristic cost for safety, hsafety(n), is always equal to
0. The reason for this is that the minimum safety cost of a
path can be zero even if the length of the path is more than

zero. Therefore, hsafety(n) must be equal to 0 for it to be
considered admissible.

H. Calculating Energy Cost

To calculate the energy cost, a simplified model was used.
It was assumed that the motor torque would provide 100% of
the required power needed to drive the robot up an incline,
and the robot would be traveling at a constant speed at all
times. Using the conservation of energy equation:

∆KE +∆PE = Work (12)

where ∆KE = 0 due to the robot moving at a constant speed
and ∆PE = m ∗ g ∗∆h and using the equations:

Work = τ ∗ θ (13)

θ = dtraveled/rwheel (14)

dtraveled =

n−1∑
i=1

√
(hcelli+1 − hcelli)

2 + d2celli (15)

Power = τ ∗ ω (16)

ω = vrobot/rwheel (17)

where τ is the applied torque, dtraveled is the total distance
traveled, rwheel is the wheel radius, the following equation
can be derived for incline power, IP :

IP =

ncells∑
i=1

vrobot ∗mrobot ∗ g ∗ (hcelli+1 − hcelli)

(
√
(hcelli+1

− hcelli)
2 + d2celli

(18)

In addition to using energy to overcome a height change,
baseline energy must be expended to travel any flat distance.
The energy consumption per distance traveled is highly de-
pendent on the specifications of the robot and is therefore left
as a user input. The total power required to traverse an edge
is the sum of the required energy to traverse the total distance
of the edge and the energy required to overcome the potential
energy change due to height difference along the edge. The
total required edge power is given by

EdgePower = cellsize ∗ EdgeLen ∗ powermin + IP (19)

where cellsize is the length, in meters, of the width of a cell
in the height map, where powermin is the power required to
traverse a unit length on the height map, and EdgeLen is the
total distance traveled as calculated in equation(5).

To normalize this value to be between 0 and 1, EdgePower
is divided by the theoretical power needed to traverse the
longest edge in the PRM, dlongest, at the maximum upwards
incline angle the robot can climb, inclinemax, represented by
the term ED. Equation 22 is used to calculate the normalized
energy cost of an edge.

IPmax = vrobot ∗mrobot ∗ g ∗ sin(inclinemax) (20)

ED =
dlongest ∗ cellsize ∗ powermin

cos(inclinemax)
+ IPmax (21)

genergy(n) =
EdgePower

ED
(22)

5



The heuristic cost for energy, henergy(n), is the same as
hspeed(n) in Equation 7 because the path from an edge to the
goal with the minimum energy cost is also a straight line.

I. Calculating Limitation Cost

To ensure that the generated path heavily avoids edges that
are impossible for the user’s robot to traverse, a limitation
measurement is employed. The limitation measurement con-
ducts three tests on a given edge. The first test is iterating
through each cell that the edge travels through and checking
if the step height up or down required to get from one cell
to the next exceeds the robot’s maximum step height up or
down. If so, the edge fails the first test.

The second test is iterating through each cell that the edge
travels through and checking if the upwards incline to get from
one cell to the next exceeds the maximum upwards incline that
the robot can traverse. If so, the edge fails the second test. The
following calculation is used to calculate the upwards incline
between two cells.

UpIncline = arctan(
hcell2 − hcell1

dcell1
) (23)

The third test is to check the clearance of the edge. The
clearance test checks whether or not the robot is able to
traverse the edge without touching any cells that are considered
obstacles. This is based on the robot’s width, and checking if
the robot might bump into a cell that is not directly along
the edge. In Figure 5, a robot traversing an edge (green line)
connecting nodestart to nodeend would assume that it is
traversable if it only considers the cells that the edge travels
through (cells with red circles at center). However, due to the
width of the robot (yellow line), it will collide with a cell that
is considered an obstacle (dark blue square). Therefore, the
heights of cells surrounding an edge (in addition to the cells
that it travels through) must be checked to ensure the robot can
traverse an edge. The same surrounding cells checked during
the HeightV ar calculation in Section IIG are used for the
clearance test. If the height difference between a cell the edge
travels through and a cell that surrounds it is greater than the
robot’s maximum step height up or down, the cell is classified
as an obstacle, and the edge fails the clearance test.

Fig. 5: Example scenario where a robot would experience a
collision with a cell (dark blue) that the edge doesn’t travel
through.

If an edge fails any of these three tests, the edge is consid-
ered impossible to traverse, and glimitation(n) = 10, 000. This

ensures that the edge is heavily avoided in the path-planning
process since 10,000 is a very high value relative to the linear
combination of the speed, safety, and energy costs. If the edge
passes all three tests, glimitation = 0.

III. EXPERIMENTS AND RESULTS

To ensure the effectiveness of PB*, three statements need
to be confirmed:

1) An increase in preference for speed, safety, or energy
results in a reduced cost for the respective preference

2) PB* performs comparably to a basic A* algorithm in
computation time

3) In a known environment with distinct paths for speed,
safety, or energy, the generated paths will follow expec-
tations

A. User Preference Tests

One expected behavior of PB* is that the cost of the
calculated path should reflect the user’s preferences. Therefore,
as the user increasingly prioritizes a preference, the resulting
preference cost for the generated path should decrease. To
demonstrate this, PB* was tested in a variety of randomized
scenarios, and the costs and preferences were recorded. In
total, 100 trials were run on 10 random height maps, with the
preference weights set to random values between 1 and 100.

For each map, the path costs for each preference were
normalized to values between 0 and 1, where 0 is equivalent
to the lowest path cost on that map, and 1 is equivalent to
the highest path cost on that map. This was done using the
following equation:

NormCostpref =
Cpref −min(Cpref )

max(Cpref )−min(Cpref )
(24)

where NormCostpref is the normalized cost for a given
preference, Cpref is the total preference cost for a path, and
max(Cpref ) and min(Cpref ) represent the maximum and
minimum preference cost on a given map for a path. As
expected, as a preference becomes more important to the user,
the corresponding cost for that preference decreases.

In Figure 6a, each dot represents the cost for an individual
path, where the blue points represent the speed costs, the green
points represent the energy costs, and the red points represent
the safety costs. As the user increases their preference for
speed, safety, or energy, the respective criterion cost of the
generated path goes down, as shown by the trend lines in
Figure 6b. This demonstrates that the user’s preference for
speed, energy, and safety actually affects the generated path
and its respective costs.

B. Runtime Tests

PB*’s computation time was compared to basic A* on
increasing height map sizes. Basic A* only accounts for the 2D
distance between nodes and ignores the underlying height map.
For this test, 50 trials were run on 8 random height maps, and
the computation times to generate paths were recorded. For
each trial, five different paths were generated: one using basic

6



(a) (b)

Fig. 6: (a) Individual criterion costs for paths generated with
varying user preferences. (b) Trend lines for each criterion cost
for generated paths as the user preferences increase.

A*, and four using PB*. The first path only prioritized speed,
the second only prioritized safety, the third only prioritized
energy, and the fourth prioritized them all equally. As the map
size increased, so did the computation time, as shown in Figure
7a. In all tests, basic A* performed the fastest, followed by
the path prioritizing speed, then energy, then safety, and then
the path that prioritized all three.

Even as the map size increased, the ratios of PB*’s compu-
tation times compared to basic A* stayed relatively constant,
shown in Figure 7b. On average, with all preferences consid-
ered during path generation, PB* took ∼15× as long to run.
Out of the three criteria, the safety cost took by far the longest
to compute, taking 12.61× as long as basic A*. Comparatively,
calculating the speed and energy costs took 8.15× and 9.32×
as long respectively. Although PB* is slower than basic A*,
PB*’s time to generate a path is minuscule compared to the
time it would take for a robot to traverse the full length of the
path, which is assumed to be satisfactory for most autonomous
robots.

(a) (b)

Fig. 7: (a) Computation Time to generate a path with different
preferences as the height map size increases. (b) PB* com-
putation time divided by basic A* computation time as the
height map size increases.

C. Manual Tests

In addition to testing the computation time and the user
preferences, PB* was tested on a number of handmade height
maps where the correct paths were obvious, in order to ensure
that it is making the correct decisions.

(a) (b)

(c) (d)

Fig. 8: Tests run on four handmade maps, with the start at the
top left and the goal at the bottom right. (a) Map for testing
user preferences. (b) Map for testing clearance. (c) Map for
testing against basic A*. (d) Map for testing robots of various
masses.

For the first test, a height map was handmade with three
obvious opportunities in mind; the map in Figure 8a has a fast
but mountainous path, a downhill but dangerous path, and an
uphill but safe and long path. The robot was configured so that
it could climb large inclines and traverse off of large drops.
As shown in figure 8a, each path (with speed in blue, safety
in red, and energy in green) took its respective opportunity.

Another map was tested in order to verify that the robot
configuration affects the resulting path. In Figure 8b, there are
two tall obstacles near the center of the map. Two different
robots were tested, both optimized for speed; the first robot
was too wide to fit between the obstacles, while the second
robot was narrower, and could fit between the obstacles.

Another notable test was to show that PB* is equipped
to make better decisions than a simple, basic A* algorithm.
The height map in Figure 8c is relatively smooth, with the
exception of a mountainous area directly between the start and
goal. The speed, safety, and energy paths (blue, red, and green
paths) avoid the high variance area and take relatively similar
paths around it. A simple, basic A* path (gray) cuts right
through the middle, as it is the quickest way to traverse from

7



the start node to the end node. While the basic A* appears to
be shorter, when taking into account changes in elevation, the
speed path generated using PB* is actually quicker to traverse.
The basic A* would take this particular robot ∼62 seconds to
traverse, while PB*’s path would take ∼51 seconds to traverse.

Finally, to test that the energy preference works, three
different robots were tested on the same height map in Figure
8d. The first robot had a mass of 2 and took a direct route
(purple). The second robot had a mass of 200 and avoided any
uphill climbs, taking a longer path instead (orange). The third
robot had a mass of 20 and followed a balanced path that
involved some climbing and some directness (green). These
tests demonstrate that as the robot’s mass increases, it becomes
increasingly likely to avoid uphill travel because it requires
more energy to ascend for heavier robots. It’s worth noting
that the speed path (blue) still differs from any energy path.

IV. CONCLUSIONS AND FUTURE WORK

Based on the presented work, we conclude PB* can produce
optimal paths based on dynamic user preferences and various
robot configurations within a sufficient time frame. PB* can
be useful for users that have robots in dynamic environments
or a variety of robots with different specifications.

There are many areas in which to improve the method of
path-planning used in PB*. Most importantly, PB* makes a
number of assumptions; for example, it assumes the robot tra-
verses at a constant speed, allowing the energy equation to be
simply the potential energy equation. Ruling out assumptions
would result in more complex calculations and would require
more user inputs, but would result in a more accurate path.

Another useful feature that could be implemented is
constraint-based optimization; for example, the user could
specify to take the safest path that takes a maximum of 30
seconds to traverse. Additionally, PB* could be applied to
more than just autonomous, ground-traversing robots, as the
cost calculations could be generalized for 3D space and used
for autonomous robots in the air, underwater, or in space.

Finally, the code could be further optimized to improve
computation time and accuracy. Other path-planning algo-
rithms, such as Theta* [9] or Field D* [10] could be used
in place of A*, as they generate paths that are more efficient
for practical robots and are commonly used in the field of
autonomous robotics [1] [2] [3]. PB* could also be packaged
into a developer kit, allowing any user to easily implement
it on their robot. While PB* already allows for many con-
figurations, it could easily be expanded upon and generalized
further.

A simple interactive demonstration of PB* can be viewed
at pathplanning.online.

ACKNOWLEDGMENTS

We would like to thank Professor Carl Sable, Professor
Michelle Rosen, and Michael Giglia for their support and
guidance on this project.

REFERENCES

[1] K. Karur, N. Sharma, C. Dharmatti, and J. E. Siegel, “A Survey of Path
Planning Algorithms for Mobile Robots,” Vehicles, vol. 3, no. 3, pp.
448–468, Aug. 2021, doi: 10.3390/vehicles3030027.

[2] S. Lin, A. Liu, J. Wang, and X. Kong, “Path-Planning Approaches
for Multiple Mobile Robots,” Machines, vol. 10, no. 773, Sep. 2022.
Available: https://doi.org/10.3390/machines10090773Encyclopedia.

[3] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz,“Global Path Plan-
ning on Board the Mars Exploration Rovers,” 2007 IEEE Aerospace
Conference, Mar. 2007, doi: 10.1109/AERO.2007.352683

[4] S. Dergachev, K. Muravyev, and K. Yakovlev, “2.5D Mapping,
Pathfinding and Path Following For Navigation Of A Differ-
ential Drive Robot In Uneven Terrain,” Sep. 2022. Available:
https://doi.org/10.48550/arXiv.2209.07252

[5] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic Terrain Map-
ping for Mobile Robots With Uncertain Localization,” IEEE Robotics
and Automation Letters, vol. 3, no. 4, pp. 3019-3026, Jun. 208, doi:
10.1109/LRA.2018.2849506.

[6] Q. Zhou, J. Park and V. Koltun “Open3D: A Modern Library
for 3D Data Processing,” Jan. 2018, arXiv:1801.09847. Available:
http://www.open3d.org/docs/release/index.html

[7] “Open Motion Planning Library: A Primer,” Kavraki Lab, Rice Univer-
sity, Jan. 2021. Available: https://ompl.kavrakilab.org/OMPL Primer.pdf

[8] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE Transactions on Sys-
tems Science and Cybernetics. vol. 4, no. 2, pp. 100–107, Jul. 1968,
doi:10.1109/TSSC.1968.300136.

[9] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-Angle Path
Planning on Grids,” Journal of Artificial Intelligence Research, vol. 39,
pp. 533–579, Oct. 2010, doi: 10.48550/arXiv.1401.3843.

[10] D. Ferguson, A. Stentz, “Using Interpolation to Improve Path Planning:
The Field D* Algorithm,” Journal of Field Robotics, vol. 23, no. 2, Feb.
2006, pp. 79-101, doi: 10.1002/rob.20109.

8

http://pathplanning.online

	Introduction
	Approach
	User Input Collection
	Map Generation
	Probabilistic Road Map
	Path-Planning
	Finding the Cells an Edge Travels Through in a Grid
	Calculating Speed Cost
	Calculating Safety Cost
	Calculating Energy Cost
	Calculating Limitation Cost

	Experiments and Results
	User Preference Tests
	Runtime Tests
	Manual Tests

	Conclusions and Future Work
	References

